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We analyze the motion of a particle on random lattices. Scatterers of two dif-
ferent types are independently distributed among the vertices of such a lattice.
A particle hops from a vertex to one of its neighboring vertices. The choice of
neighbor is completely determined by the type of scatterer at the current vertex.
It is shown that on Poisson and vectorizable random triangular lattices the par-
ticle will either propagate along some unbounded strip or be trapped inside a
closed strip. We also characterize the structure of a localization zone contained
within a closed strip. Another result shows that for a general class of random
lattices the orbit of a particle will be bounded with probability one.

KEY WORDS: Lorentz lattice gas; Delaunay lattice; random lattice; localiza-
tion; propagation; rigid environment.

1. INTRODUCTION

Systems generated by the motion of particles on a lattice, occupied with
scatterers randomly distributed over its vertices, have been studied exten-
sively in recent years. The models in which collisions of particles with the
scatterers result in changes to an environment (configuration of scatterers),
have been especially popular in statistical physics, (1) theory of artificial
intelligence, theoretical computer science, (2) graph theory (3) and communi-
cation theory. (4)

Recently, a class of cellular automata called walks in rigid environ-
ments, which generalizes all these models, was introduced in ref. 5. Accord-
ing to this paper, an environment is said to have rigidity r if the type of
scatterer at a lattice site changes after the r-th visit of a particle to this site.
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It has been shown that models which belong to this class are exactly solv-
able in dimension one. On a regular triangular lattice the model of rotators
constituting a random environment with rigidity one has also been shown
to be solvable for the motion of one particle. (6)

In the present paper we study one of these models on random lattices.
The natural assumption is made that a particle hops to one of its neigh-
boring vertices at each integer moment of time. We show that on both
Poisson and vectorizable Delaunay random lattices (introduced in ref. 7
and ref. 8 respectively), a particle will either propagate in an infinite
random strip, or be trapped inside a closed random strip. It is our conjec-
ture that the probability of unbounded orbits is positive. However, the way
to prove this result remains unclear. We also demonstrate that the proba-
bility of bounded (periodic) orbits is positive. Until now, periodic orbits
have been observed numerically for the Poisson lattice (9) but not for the
vectorizable lattice.

We also characterize a random environment enclosed inside a periodic
orbit. Namely, the average coordination number of vertices in this internal
region cannot exceed 6 and is bounded from below by 4.

Finally, we show that the orbit of a particle moving on an arbitrary
(not triangular) random lattice is bounded with probability one provided
that the lattice satisfies certain natural conditions.

2. LOCALIZATION AND PROPAGATION IN RANDOM TRIANGULAR

LATTICES

2.1. Lattice Gases on Delaunay Random Lattices

The Delaunay random lattice (7, 8) is defined as the dual lattice to the
Voronoi tessellation of the plane. For a given set of points, the Voronoi
tessellation is constructed as follows: for each point of the set we define a
cell associated with it as a region of the plane which is nearer to this point
than to any other point of the set. Any two such cells sharing an edge are
considered neighbors. By drawing a link between every two points asso-
ciated with neighboring cells we obtain a triangulation of the plane called a
Delaunay random lattice. One of the most important properties of this
lattice is the following:

Property 2.1. The circle circumscribed around any triangular cell of
a Delaunay random lattice does not contain any lattice points inside.

We will consider two known variations of the Delaunay random
lattice, a Poisson random lattice (PRL) and a vectorizable random lattice
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(VRL), which differ from one another by the initial distribution of the
lattice points. The first is obtained by distributing the points randomly and
uniformly over the infinite plane. To construct the second lattice we first
cover the plane with a regular square lattice and then distribute points
randomly and homogeneously inside each square in such a way that each
square contains only one point. By connecting the points with links using
the procedure described above, we obtain the two variations of the Delau-
nay random lattice. For further details see e.g. ref. 9.

This paper examines the motion of a particle on both Poisson and
vectorizable random lattices. In either case the lattice is fully occupied by
rotators that rotate the velocity vector of a particle arriving at a site by
the largest possible angle, either to the right (R-rotator) or to the left
(L-rotator). We assume that initially the rotators are placed in the vertices
of the lattice independently with probabilities PR and PL=1−PR respec-
tively. In what follows, all probabilities are computed with respect to this
distribution.

The state of a rotator switches to the opposite (RZ L) after each
passage of the particle. Therefore this model belongs to the class of walks in
rigid environments introduced in ref. 5. The corresponding value of the
rigidity of environment is one, because only one visit of the particle is
required to change the type of scatterer at any site. Following ref. 1 we will
refer to this model as the Flipping Rotators (FR) model on a Delaunay
random lattice.

In the past, the results of computer simulations based on this model (9)

showed the existence of periodic orbits on a PRL but not on a VRL. Here
we will investigate the dynamics of the FR model on Delaunay random
lattices, of both types, and show that the probability of periodic orbits is
positive in both cases.

2.2. Propagation

In this section we will show that the FR model on a Delaunay random
lattice exhibits similar behavior as it would on a regular triangular lattice: a
moving particle will always propagate in some strip, which we define as
follows:

Definition. Given a random lattice L we define a strip as a region
which is formed by all the sites that a particle visits while performing zigzag
motion on L (i.e. rotating at each step by the largest possible angle to the
left or to the right in alternating order).

Here propagation is defined as it was in the case of a regular lattice
(e.g. ref. 6): a particle propagates if its motion is confined to a strip, where
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each site of the strip can be visited no more than a fixed number of times
(unless the strip is bounded).

Proposition 1. For any initial distribution of the scatterers on a
Delaunay random lattice, a moving particle always propagates in a strip.

The proof of Proposition 1 repeats that of a similar result for the FR
model on a regular triangular lattice. (6) The result is due to the existence of
a blocking mechanism that produces a blocking pattern based on a zigzag
path of length four. On a regular triangular lattice the blocking pattern
consists of two pairs of parallel velocity vectors at four consecutive time
steps (see Fig. 1). It uniquely defines the propagation strip as well as the
direction of propagation. The blocking pattern appearing on a Delaunay
random lattice looks like a distorted version of that shown in Fig. 1 due to
the irregularity of the lattice. Such a pattern always appears after a finite
number of steps (not exceeding 11 (6)) and serves two purposes: first, it
keeps the orbit of a particle strictly confined to the strip, and second, it
prevents the particle from accessing the sites of the strip lying on the
opposite side of the blocking pattern. Every time the particle visits a new
site of the strip the pattern shifts along the edge of the strip in the direction
of propagation thus forcing the particle to continue moving forward. The
proof of the result in ref. 6 was based entirely on the triangularity of the
lattice and did not require the lattice to be regular. An example of a prop-
agation strip is shown in Fig. 2.

Let us now consider the propagation of a particle in a strip. Every
time the particle visits a new site on the strip it will, depending on the state
of the scatterer at this site, either a) continue moving onto the next site in
the direction of propagation, or b) turn back and make additional 6 steps
before visiting the next site along the strip. We will refer to the sites which
exhibit outcome a) as forwarding sites, and outcome b) as bouncing sites.
For instance, if a particle propagates from left to right in a horizontal strip
then the sites with R-rotators on the "top" boundary of the strip and those
with L-rotators on the "bottom" boundary are forwarding sites, whereas
the rest are bouncing sites.

Fig. 1. Blocking pattern appearing on a regular triangular lattice. Arrows indicate the suc-
cessive velocity vectors of the particle.
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Fig. 2. (Ref. 6, Fig. 1) An example of a propagation strip (shaded area) on a Delaunay
random lattice where the particle arriving at a site is deflected over the largest possible angle,
either to the right or to the left, depending on the R or L nature of the scatterer. Arrows indi-
cate particle displacements.

Fig. 3. Reorganization of the medium after the passage of a particle in the case of a)
forwarding site; b) bouncing site. Arrows indicate successive velocity vectors of the particle.
The number of arrows on each edge corresponds to the number of times the particle traveled
along that edge.
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When a particle visits a forwarding site, it changes the state of the
scatterer at that site to its opposite (RZ L) (see Fig. 3.a)). However, when
a particle visits a bouncing site it changes the state of the scatterer at the
site situated three steps back along the zigzag path from the bouncing site
(see Fig. 3.b)). This observation leads to the following statement, which has
recently been formulated in ref. 10:

Proposition 2. The passage of a particle results in a reorganization
of the medium in such a way that the initial configuration of the scatterers
on the strip shifts three steps back along the zigzag path contained in the
strip.

Proof. It follows from our discussion above that site a will become
forwarding after the passage of a particle iff site b located three steps ahead
of it along the zigzag path, is bouncing. However a and b lie on the oppo-
site boundaries of the strip, therefore a will assume the state R(L) iff b is in
the state R(L). Thus, the scatterer at site b gets shifted to site a. Similarly,
every scatterer on the strip gets shifted three steps back along the zigzag
path. L

2.3. Localization

It has been shown in ref. 6 that, on a regular triangular lattice, a
particle propagates a strip formed by two parallel lines, and therefore no
closed orbits can be found. In Proposition 3 below, we will show that this is
not the case for Delaunay random lattices. Before we proceed with the
proof however, let us make a few observations:

1) According to Proposition 1, the trajectory of a particle is confined
to a strip. Therefore, periodic motion should be confined to some bounded,
closed strip, i.e. a strip whose boundaries are closed contours on L. In what
follows, we will refer to such a strip as a periodic strip. It should also be
noted that the inner and outer boundaries of a periodic strip have equal
lengths. Hence we can define the length of a periodic strip to be equal to
the length of either of its boundaries.

2) A particle will never arrive at a periodic strip nor will it leave it.
Therefore, the trajectory of a particle placed at the origin will be periodic
only if the origin belongs to some periodic strip.

3) Due to the nature of a Delaunay random lattice, the length of a
closed contour on the lattice is bounded from below by 3. We will refer to a
strip of length three as a minimal periodic strip, and the orbit confined to
this strip as a minimal periodic orbit.
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Proposition 3. The probability of closed trajectories for the FR
model on a Delaunay random lattice (PRL or VRL) is positive.

2.3.1. Poisson Random Lattice

Let L be a Poisson random lattice. To prove Proposition 3 we will
show that the probability of a minimal periodic trajectory on L is positive.

Let C be any triangular cell on L with vertices a1, a2 and a3. We will
show that, with positive probability, the boundary of this cell is the inner
boundary of a minimal strip.

The proof will require additional constructions. Through each vertex
ai, i=1, 2, 3 we will draw a line li parallel to the segment ai−1ai+1 (the index
i is understood in the modulo 3 sense). Since these lines are parallel to the
sides of the cell C, they can not be parallel to each other. For each
i=1, 2, 3 we will denote the point of intersection of li−1 and li+1 by bi.

Finally we denote as D1, D2 and D3 the regions bounded by these lines
as shown in Fig. 4. Each Di has a positive measure. Hence with probability
one they contain infinitely many lattice points. Notice also that pairwise
intersections of Di’s are empty, therefore the distributions of lattice points
inside the regions Di, i=1, 2, 3, are independent.

Fig. 4. Construction of minimal periodic strip on PRL in the proof of Proposition 3.
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Inside each Di we choose a lattice point di that gives rise to the circle
Odi , passing through the points di, ai−1 and ai+1, of the smallest radius. Note
that for each i the radius of Odi is finite. With probability one each di lies in
the interior of Di, therefore the points ai, di−1 and di+1 do not lie on the
same line, and the circle Oai passing through them has a finite radius.

Let us recall that Delaunay random lattices satisfy Property 2.1, stated
above. Hence the following statements are equivalent:

• The contour a1a2a3 is an inner boundary of a periodic strip;

• The coordination number of each site ai, i=1, 2, 3, is 4;

• The region formed by the union of six circles

30
3

i=1
Oai 4 2 30

3

i=1
Odi 4

does not contain any lattice points except ai and di, i=1, 2, 3.

The probability of the last event is positive since each of the six circles
has a finite radius, and the distribution of the points is uniform over the
plane. This proves that the probability that the contour a1a2a3 is an inner
boundary of the strip is positive.

Since any triangular cell with positive probability gives rise to a
periodic strip, then so does any of the cells that have a vertex at the origin.
Hence, with positive probability, the origin belongs to a periodic strip and
a particle placed at the origin has a minimal periodic trajectory.

2.3.2. Vectorizable Random Lattice

Again let L be a random lattice. Since the construction of a VRL
imposes restrictions on the distribution of sites on the plane, the argument
we used for the PRL case will not work for a contour on a VRL (it is not
clear even whether it is possible to construct a periodic strip of length three
on a VRL).

Nevertheless, we can prove that contours, which are the inner bound-
aries of periodic strips, have positive probability. Let us choose eight disks
Ai i=1, ..., 8 of a sufficiently small radius r as shown in Fig. 5. Here, the
radii of the disks are chosen to be the same for the sake of simplicity. In
principle, the radii of Ai can be different. However they must be small
enough for the argument below to hold true. If, for each i, we denote the
maximum possible radius of Ai as ri, then r=miniri. Next, inside each disk
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Fig. 5. A closed trajectory of an even length on a VRL. Vertices ai and bi, i=1, ..., 8, are
arbitrary points in the disks Ai and Bi, i=1, ..., 8 respectively. Dotted lines indicate the edges
of the reference lattice. A circle circumscribed around any cell of the strip must not enclose an
"empty" square of the reference lattice. The circles shown indicate the biggest possible circles
arising for the chosen set of vertices.

Ai we pick a point ai and consider a contour A=a1...a8. Notice that since
the radius r of the disks is nonzero the probability of such a contour on L
is positive. Now, let us choose eight disks Bi of the same radius r as shown
in Fig. 5. Again, the radii are chosen to be the same, and equal to the
radius of the disks Ai just for the sake of convenience, but neither of those
conditions is essential for the construction.

Claim. Any contour A=a1...a8 with ai ¥ Ai, i=1, ..., 8, constructed
as above, and a contour B=b1...b8 where bi ¥ Bi, i=1, ..., 8 form a strip
with positive probability. This strip has A as its inner boundary and B as
its outer boundary.

Proof. To prove our Claim let us notice that by Property 2.1, A and
B together form a strip iff, for every i, both a circle passing through ai, bi
and ai+1, and a circle passing through ai, bi and bi−1 do not contain any
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other lattice points. This event has a positive probability if the circles do
not enclose an entire square of the reference lattice other than one contain-
ing ai or bi for some i. It is easy to see from Fig. 5 that for any choice of the
points ai and bi from the disks Ai and Bi respectively all of the mentioned
circles satisfy this condition (the two biggest circles arising for our choice of
ai and bi, i=1, ..., 8, are shown in Fig. 5 for verification). This concludes
the proof of Claim. L

Corollary. Any contour A=a1...a8 constructed as above is with
positive probability an inner boundary of a periodic strip.

Remark. One can construct longer contours of any even length by
adding pairs of segments to the contour in Fig. 5.

The same proof can be repeated for contours of any odd length (see
Fig. 6).

Now, combining the Corollary and the fact that the probability of the
contour A is positive, we can conclude that the probability of a periodic

Fig. 6. A closed trajectory of an odd length on a VRL. Here we followed the notations used
in Fig. 5.
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strip on a VRL is positive. This concludes the proof of Proposition 3 for
the case of a VRL.

Remark. Although Proposition 3 demonstrates that the probability
of bounded trajectories is positive, it does not answer the question whether
it is equal to or strictly less than 1. Our conjecture is that it is strictly less
than 1 and, therefore, the probability of unbounded trajectories is positive.

2.4. Remarks on the Periodic Motion

By Proposition 2 the configuration of scatterers shifts along the strip
with the passage of a particle. Hence the period of the particle motion in a
periodic strip may involve more than one circuit, or passage of the strip. To
illustrate this let us choose a periodic strip of length 16 (see Fig. 7), and
trace the position of a scatterer originally placed at the origin a1 with each
circuit (see Table I).

We see that during circuits 1, 5 and 9 the scatterer gets shifted twice:
first, at the beginning of the circuit, to one of the last three positions on the
strip, and then again at the end of the circuit, upon passing those positions.
This suggests that for a periodic strip of length n the period of the particle
motion may involve as many as n−3 circuits.

Fig. 7. Periodic strip of length 16 illustrating periodic motion of the particle on a Delaunay
random lattice. The dot and the arrow indicate the initial position and velocity vector of the
particle. The period of the particle motion may involve as many as 13 circuits.
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Table I. Position of a scatterer placed at a1

after each passage of the periodic strip

shown in Fig. 7 by a particle.

Circuit Position

1 a14 then a11
2 a8
3 a5
4 a2
5 a15 then a12
6 a9
7 a6
8 a3
9 a16 then a13
10 a10
11 a7
12 a4
13 a1

To verify this suggestion, we consider a strip of length n and enu-
merate the sites of this strip a1 through an in the same way as we did for the
previous example. The scatterer undergoes a shift with each passage of a
particle. The maximum number of such shifts required for the scatterer to
return to its original position is n. However, whenever the scatterer arrives
at one of the positions a1, a2 or a3 it gets shifted twice during the next
circuit performed by the particle reducing the number of the circuits
required by one each time. Hence the maximum number of circuits
required to return the configuration to its original state is equal to n−3. In
the case of n=16 the period involves 13 circuits as we see from Table I.

2.5. Necessary Condition for Periodic Orbits

Let us assume that there exists a closed (periodic) orbit. We will find a
necessary condition for such an orbit to exist. According to Proposition 1
above this orbit is confined to a closed strip. We will denote the inner
boundary of this strip as Sin and the outer boundary as Sout.

Proposition 4. Let W be the region of a random lattice contained
inside the boundary Sin of a periodic strip including the boundary itself.
Then the average coordination number c for this region satisfies the
inequality:

4 [ c < 6.
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Fig. 8. The region W=Din 2 Sin in Proposition 4. Dotted lines indicate the strip enclosing W.

Proof. First, we introduce some notations. We denote the region
contained strictly inside Sin by Din, and the region strictly outside Sin by Dout.
Also let W=Din 2 Sin (see Fig. 8) and Wc be its complement in R2.

To compute the average coordination number we find the total
number T of links originating at all sites in W and divide it by the total
number of sites in the region. Let NS be the number of sites on Sin and ND
be the number of sites in Din. It is easy to see that each site of a strip has
exactly 4 links in the strip. More precisely, 2 links lie on the boundary and
2 lie inside the strip. Therefore each site of Sin has exactly 2 links in Dout and
2 links on Sin (see Fig. 8).

We split the process of computing T into three steps:

Step 1: the number of links in Dout.

Each of the NS sites of Sin has exactly 2 links in Dout. Hence the total
number of links in Dout is equal to t1=2NS.

Step 2: the number of links on Sin.

Again each of the NS boundary sites has exactly 2 links lying on Sin.
Hence the total number of boundary links is equal to t2=2NS.

Step 3: the number of links in Din.
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Let us consider a planar graph G which consists of the triangulated
region W and an additional face Wc. Let t3 denote the number of edges
lying strictly inside Din. Also, let V, F and E be the total number of verti-
ces, faces and edges in the graph G respectively. Then,

E=t3+NS, V=NS+ND, and F=
2t3+NS
3
+1.

Substitution of these values into Euler’s formula V−E+F=2 allows us to
compute t3, i.e.:

t3=NS+3(ND−1).

Now, the total number of links is given by

T=t1+t2+2t3=4NS+2NS+6(ND−1)=6(NS+ND−1)

To compute the average coordination number we divide it by the total
number of sites S=NS+ND

c=
6(NS+ND−1)
NS+ND

=6 11− 1
S
2 .

As a corollary to the formula above we obtain that c < 6 for any
number S. Moreover c is an increasing function of S. Therefore, its
minimum is attained when S assumes the least possible value, which is 3
(for the case of a minimal periodic strip where ND=0, NS=3), and hence
is equal to 4. This concludes the proof of Proposition 4. L

3. ROTATORS WITH RIGIDITY ONE ON GENERAL RANDOM

LATTICES

In this section, we will investigate the dynamics of the Flipping Rota-
tors model on random lattices of a more general type. We consider a lattice
satisfying the following two general conditions:

Property 3.1. The configuration shown in Fig. 9, i.e. a triangular
cell, with each of its vertices sharing a link with exactly three other sites of
the lattice, appears infinitely many times on the lattice.

Property 3.2. With probability one an unbounded trajectory enters
any fixed finite configuration infinitely many times.

Property 3.1 seems to be a general property for any random lattice of
a generic type where the cells are allowed to be polygons with any number
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Fig. 9. The triangular cell pattern appearing infinitely many times on random lattices under
study (see Property 3.1).

of nodes. Property 3.2 holds if, for instance, a distribution of vertices on a
random lattice is translationally invariant.

Proposition 5. In the FR model on a lattice satisfying Properties
3.1 and 3.2 above, the trajectory of a particle is bounded with probability
one.

Proof. The proof of Proposition 5 is based on the existence of so
called back-scatterers, i.e. clusters formed by sites of the lattice with the
following property: if a particle enters the cluster through a certain site, it
will leave it after a finite number of steps through the same site with the
opposite velocity (see e.g. refs. 5 and 6).

To give an example of such a cluster let us consider the triangular cell
C1 as specified in Property 3.1 and an adjacent cell C2. Now, let us suppose
that all sites of C2 are occupied by the left rotators L, and the remaining
site of C1 by the right rotator R, as shown in Fig. 10.a). Then it is easy to
see that this configuration has a back-scattering property. Indeed, if a par-
ticle enters the cluster through the site marked as e, it will first travel coun-
terclockwise along the boundary of C1, and return back to e. Then it will
travel along the boundary of C1 2 C2 until it returns to e again. After these
two circuits the particle will leave the cluster along the same link it came
through originally. Notice that this back-scattering procedure does not
bring the configuration of scatterers to its original state, but instead leaves
it in the state shown in Fig. 10.b). However, the cluster will return to its
original configuration the next time a particle enters this cluster and gets
back-scattered. Notice that the probability of such a back-scatterer is posi-
tive and equal to PLnPR where n is the number of sites in C2.

To prove Proposition 5, let us assume that the trajectory of a particle
is unbounded. Then, by Properties 3.1 and 3.2 it will enter infinitely many
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Fig. 10. Two states of a back-scatterer. Each time a particle enters configuration a) (b))
through the site marked as e (the velocity vector of the particle entering the cluster is indicated
by the arrow) it gets back-scattered and the configuration of the cluster switches to b) (a)).
The next visit of a particle to this cluster will bring it to its initial configuration a) (b)).

triangular cells, and hence infinitely many back-scatterers, although not
necessarily through the entrance site e. Since the environment changes after
each passage of the particle, we will consider only the first visit of the par-
ticle to a cluster. Note that clusters may intersect. Hence, if the particle
visits a site that belongs to more than one cluster we will count it as a visit
to all of the clusters in the intersection. Under this restriction we can
assume the clusters to be independent. By our assumption, the trajectory of
the particle is unbounded. Hence, by Property 3.2, it will enter infinitely
many independent clusters. However, each cluster consists of finitely many
sites. Furthermore, the positions and the orientations of clusters with
respect to each other are independent. Therefore, with probability one, the
particle will enter some cluster through its entrance point e and be back-
scattered.

After back-scattering, due to the time reversibility of the model under
study, the particle will retrace its path to the origin and continue its
motion. At this point we can apply the same argument to conclude that
with probability one it will enter another back-scattering cluster through its
entrance point e, and be back-scattered again. The particle will then return
to the origin again retracing its path. After that the motion of the particle
will become periodic going back and forth between the two back-scattering
clusters. This yields a contradiction to our assumption. Hence, the trajec-
tory of a particle is bounded with probability one. L
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